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Nonlinear progressive free waves in a circular basin 

By PETER J. BRYANT 
Mathematics Department, University of Canterbury, Christchurch, New Zealand 

(Received 9 June 1987 and in revised form 20 January 1989) 

A nonlinear analysis is presented of waves propagating around the free surface of 
water contained in a circular basin of finite uniform depth. The property that 
distinguishes these waves from unidirectional gravity waves is the occurrence of 
low-order resonant interactions between the components composing them. Steady 
waves in the neighbourhood of resonance are calculated in the fully nonlinear 
problem, when it is shown that multiple families of free-wave solutions, each family 
having a different set of resonating wave components, are associated with each of the 
water depths at which resonance occurs. Linear stability calculations indicate that 
most steady waves dominated by resonating wave components are linearly unstable. 
The nonlinear time evolution of perturbed waves is calculated as a check on the linear 
stability results, leading to doubts about the relevance of the linear prediction when 
marginal instability is said to occur. 

1. Introduction 
Resonant waves of large size can be generated by storms or earthquakes in 

enclosed regions such as harbours or bays. The resonance may result from external 
forcing of waves near their natural frequencies, or from internal forcing of some wave 
components by others. An example of the latter occurs in a circular basin near a 
depth to radius ratio of 0.831, when the first harmonic of a wave progressing around 
the basin forces resonantly the second harmonic of the wave, causing the two 
harmonics to be of comparable magnitude. Aresonant triad is set up consisting of the 
first harmonic interacting with itself and the second harmonic. It is this internal 
forcing of wave components, in a free wave, which is investigated here. Both types 
of resonance may be present in externally forced waves, but only internal resonance 
can be present in free waves. 

Weakly nonlinear methods for dynamical systems with a small number of degrees 
of freedom have been applied by Miles (1976, 1984a, b )  to wave problems in fluid 
mechanics. He developed a Hamiltonian formulation for the analytical calculation of 
forced damped waves near resonance in closed basins, applying it in particular to 
circular basins. Prior assumptions had to be made about the ordering of the wave 
components, assumptions which may fail near internal resonance. The ordering then 
is influenced strongly by the relative strengths of the resonant interactions between 
the wave components. For this reason, it is desirable to use a fully nonlinear method 
a t  resonance without prior assumptions on the ordering of the wave components, 
particularly when damping is negligible. It will be shown that there are multiple 
wave solutions associated with the occurrence of internal resonance, with each family 
of steady wave solutions having a different ordering of the wave components. Miles 
(1984 a )  studied free-standing waves in a circular basin, but because progressive 
waves have fewer depth ratios a t  which internal resonance is significant than 
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FIGURE 1. Steady circular progressive wave, E = 0.02, d = 0.78, drawn relative to the horizontal 
mean surface, without showing the sides of the circular basin. Vertical magnification 5. 

standing waves have, the present investigation is confined to progressive waves. 
Preliminary calculations on standing waves showed good agreement with Miles’ 
calculations only when the prior ordering assumptions are valid. 

Wilton’s ripples are another example of multiple families of steady waves subject 
to internal resonance, in this case capillary-gravity waves (Chen & Saffman 1979, 
1980; Schwartz & Vanden-Broeck 1979). The usual ordering of Fourier coefficients in 
steady waves is to take the nth Fourier coefficient to be of nth order in the amplitude 
parameter (sometimes known as Stokes ordering). The multiple families of Wilton’s 
ripples are calculated by reordering the Fourier coefficients. One family, for instance, 
has the first and second Fourier coefficients of the same order, and, like the example 
above, is associated with a resonant interaction between the first and second 
harmonics of the wave. Perturbation expansions with different orderings could be 
used to calculate the multiple families of steady wave solutions found here. The 
numerical method used instead finds all families of solutions because it makes no 
prior assumptions about t,he ordering of the wave components. 

One example of a circular progressive wave is sketched in perspective in figure 1. 
The circular wave is drawn relative to the horizontal mean surface, without the sides 
of the circular cylinder being shown. In  the notation defined in 52, it  has a depth ratio 
d = 0.78, an amplitude ratio 6 = 0.02, and it  is drawn with a vertical magnification 
of 5. The wave progresses in the 0-direction with an angular phase velocity 
1.282(g/a)i .  Like Stokes waves, the crest is further above the mean surface than the 
trough is below. 

The water surface displacement ~ ( r ,  0 ,  t )  and the velocity potential $(r ,  0, x ,  t )  are 
both represented by truncated Fourier-Bessel series in the present method, with the 
coefficients in the series being chosen to fit Fourier-Bessel representations of the 
nonlinear free water-surface boundary conditions. This is an adaptation to a circular 
geometry of a fully nonlinear method developed previously for Cartesian geometries 
(Bryant 1985), and is based on the linear theory of waves in circular basins (Lamb 
1945, Q 191). It is equivalent to collocation on a network of points in r and 0, and is 
a method of series truncation. One advantage it has over the usual collocation 
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methods is that the components of the series may be interpreted directly in terms of 
the linear wave components. Another advantage is that the residuals left by the 
boundary condition representations show directly which additional wave com- 
ponents need to be included to improve the numerical precision. The method is taken 
further than in previous applications, now including calculations of the linear 
stability of steady waves, and of the time evolution of unsteady waves. 

The shallow-water approximation is widely applicable to wave propagation in 
enclosed regions, and finite difference schemes have been developed for the numerical 
solution of such models. However, the simplification or neglect of wave dispersion in 
the shallow-water approximation modifies severely the occurrence and contribution 
of wave resonance. It appears to be desirable to supplement wave calculations based 
on the shallow-water approximation with separate accurate calculations on the 
nature and contribution of resonant waves. 

2. Progressive waves and resonance 
A circular basin of radius a contains water of uniform depth, with d denoting the 

depth to radius ratio. Cylindrical polar coordinates r ,  8, z are measured from an origin 
0 a t  the centre of the mean horizontal free water surface, where the z-axis is vertically 
upwards, and r ,z  are non-dimensional multiples of a. The time variable t is a non- 
dimensional multiple of (alg);. The water surface displacement, y ( r ,  8 ,  t ) ,  and the 
velocity potential $(r ,  8,  z ,  t ) ,  are non-dimensional multiples of q0 and (ga)srO 
respectively, where qo is the root-mean-square surface displacement (equation (2.6)). 
The amplitude ratio e is defined to be Vo/a. The set of equations to be solved is 

(2.la) 

$ , = O  o n r =  1, ( 2 . l b )  

# , = O  o n z = - d ,  (2.14 

(2.ld) 

(2.1 e )  

Following the linear solution, waves progressing with non-dimensional angular 
velocity c in the positive &direction may be described by the Fourier-Bessel series 

(2.2a) 
m m  

7 = C C J,(k,, r )  (amn cos m(8- ct) + a,, sin m(8- c t ) ) ,  
m=o n-1 

w m  coshk,,(z+d) 
@ = J m ( k m n r )  coshk,,d 

(bmn sin m(8 - ct) + P,, cos m(8 - c t ) ) ,  (2.2 6 )  
m-0 n-1 

where Tm(kmn) = 0 (m = 0,1,2,  ..., n = 1,2 ,  ...). (2.2c) 

(k,, is the nth zero of T, (Abramowitz & Stegun 1965, p. 411).) Equations (2.2) 
satisfy (2.1 a, b, c) identically. The wave coefficients a,,, a,,, b,,, Pmn, all m, n, must 
be found so that they satisfy (2.ld, e )  to any required numerical precision. 
Symmetric waves of steady shape are given with all coefficients amn, b,, constant 
and amn,Pmn zero. The coefficients vary slowly with time in the linear stability and 
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m 

2 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 

n 

2 
2 
3 
4 
2 
3 
4 
5 
6 
7 
8 

d 

0.831 
0.279 
0.455 
0.748 
0.158 
0.249 
0.330 
0.423 
0.542 
0.721 
1.204 

TABLE 1 .  Depth ratios d satisfying the linear resonance relation (2.5) 

time evolution calculations. The slow variation in time is interpreted in practical 
terms as meaning that the coefficients may be calculated accurately by Fourier 
analysis over each wave period, or equivalently, that their timescale is large 
compared with the wave period. 

When the boundary conditions ( 2 . l d ,  e )  are linearized, and 7,  q5 represented by 
only one (m,n)  term of the series (2 .2a ,  b) ,  this term satisfies 

am, = mCbm,, am, = -mCPmnT ( 2 . 3 ~ )  

mc = (kmn tanh k,, d ) i .  (2 .3b)  

For a nonlinear progressive wave dominated by the fundamental ( 1 , l )  wave 
component, (2 .3b)  provides a first approximation to the wave velocity, 

c = (k,, tanh k, ,  d ) ; .  

m(k,, tanh k,, d )i = (k,, tanh k,, d )i. 

(2 .4)  

Resonance occurs for the nonlinear free wave near depth ratios at which (2.3b) is 
satisfied by this value of c ,  that is, near depth ratios d given by 

(2 .5)  

All solutions of this equation up to m = 4 are listed in table 1. It should be 
emphasized that the values in table 1 provide only a first approximation to the depth 
ratios at which resonances occur. The nonlinear amplitude-dependent modification 
of (2 .3) ,  (2.4) is ignored, and it is assumed that it is the ( 1 , l )  wave component which 
is forcing all other wave components, one of them resonantly. It is noted that 
convergence to the linear theory, as E tends to zero, is non-uniform a t  the depth ratios 
where internal resonance occurs. 

The surface displacement 7 is a non-dimensional multiple of the root-mean-square 
surface displacement, or equivalently, 7 has a root-mean-square value of 1,  

from which 

This normalization (suggested by Miles) makes constant E equivalent to constant 
potential energy. 
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3. Methods of solution 
Symmetric waves of steady shape are calculated by putting 

amn = (arnn)O, bmn = ( b m n ) o ,  a m n  = 0, Pmn = 0, all m, n) (3 .1 )  

in ( 2 . 2 a ,  b )  and substituting in ( 2 . 1 d )  e ) .  The latter equations are written, 
respectively, 

F = 2 2 F,,Jp(kp,r)eosp~e-~ct~ = 0, ( 3 . 2 a )  
p=o q=1 

G = 2 2 Gp,Jp(kpqr)sinp(0-ct) = 0, 
p=1 q-1 

(3 .2b )  

from which Fpq((amn)o> (brnn)o, E ,  d )  C )  = 0, ( 3 . 3 a )  

Gpq((amn)O, (bmn)o, E ,  d ,  C)  = 0, (3 .3b )  

for all p ,  q. The number of functionals Fpq) G,, is the same as the number of unknown 
amplitudes (u,,)~, (bmn)o .  The normalization constraint ( 2 . 7 )  provides an additional 
equation, balancing the phase velocity c which is an additional unknown variable. 

The numerical method of solution for symmetric steady waves is the same as that 
described previously (Bryant 1985). For given values of E and d ,  a trial solution for 
the unknown variables (b,,),, and c is substituted into ( 2 . l d )  e )  over a 
network of points in r and 0, and the functionals FPq,Gpq calculated by inverting 
numerically the Fourier-Bessel series (using the trapezoidal rule for evaluating the 
inversion integrals). The derivatives of the functionals with respect to the unknown 
variables are calculated similarly by inverting the Fourier-Bessel series for the 
corresponding derivatives of (3.2). Newton’s method is then used to improve the trial 
solution. The functionals Fpq, G,, are found also for values of p and q outside those 
included in the calculation, in order to determine which wave modes should be added 
to the Fourier-Bessel series to improve the precision with which ( 2 . l d ,  e) are satisfied 
over the complete range of r ,  0, and t .  Although the Fourier-Bessel series converge 
without difficulty a t  the moderate values of the amplitude parameter used here, 
Fourier series methods can be expected to fail a t  values of E near breaking, when they 
are usually replaced by boundary integral techniques. 

The linear stability of the symmetric waves is investigated by the Floquet method, 
by putting 

- 
a m n  = (arnn)o+drnn) bmn = ( b m n ) o + b m n )  urn, - hmn, Pmn = P m n . >  a11m)n) 

(3 .4 )  

in (2 .2a ,  b ) ,  and sukstituting-in ( 2 . l d ,  e ) ,  with linearization in the time dependent 
perturbations d,,, b,,, h,,, p,,. The Fourier-Bessel series are inverted numerically 
to produce a set of first-order linear differential equations for the perturbations. This 
set contains exactly twice the number of equations as that in the set of equations 
( 3 . 3 ~ )  b ) .  The set is solved by using the IMSL subroutine Eigrf, which finds the 
eigenvalues and eigenvectors of the stability matrix formed from the coefficients of 
the differential equations. 

The time evolution of the unstable waves is calculated by letting the wave 
coefficients a,,, b,,, urn,, P,,, all m, n, be slowly varying functions of time t .  The 
Fourier-Bessel series are inverted numerically to yield a set of first-order nonlinear 
differential equations for the wave coefficients. The set is integrated step-by-step in 
time with the IMSL subroutine Dgear. The normalization constraint is evaluated a t  



458 P. J .  Bryant 

each step as a check on the integration. It remains almost constant near value 1 for 
each perturbed wave until the effects of the truncation of the Fourier-Bessel series 
become significant. 

4. Symmetric steady waves 
Multiple families of steady waves are associated with the resonant depths listed in 

table 1. Steady waves arising from the major resonance between the fundamental 
( 1 , l )  wave component and the (2,2) wave component near the depth ratio d = 0.831 
are described here. The amplitude ratio e is equal to 0.02 in all calculations. When this 
depth ratio is approached from larger values, the next significant resonance in table 
1 occurs between the ( 1 , l )  and (4,8) wave components at a predicted value 
d = 1.204. The branching associated with this resonance actually occurs near 
d = 1.4 (when E = 0.02), the difference probably being due to nonlinear amplitude- 
dependent modification of the linear resonance relation (2.5) a t  the larger values of 
d where the tanh depth dependence is weak. 

The wave coefficients a,,,a,,,a,, are plotted as functions of the depth ratio d in 
figures 2 (a,  b, c). The wave a t  the point A in the three figures, a t  depth ratio 1.2, has 
an ordering of the wave components consistent with non-resonant interactions 
between them, and is linearly stable. Moving along the curve, with d decreasing, a2, 
begins to increase suddenly at B, near d = 0.85. The normalization constraint (2.7) 
causes a,, to decrease correspondingly. Weakly nonlinear calculations (illustrated for 
example by Miles (1984b) figures 2 and 3)) show resonance curves with wave 
amplitudes increasing towards peaks, whose height is inversely related to the wave 
damping. Since the wave damping is assumed to be negligible here, the question of 
interest is the manner in which resonance is approached in a fully nonlinear model. 

The rapid increase in a,, from B to  C is consistent with weakly nonlinear 
calculations. The increase in a22 is reversed suddenly a t  C', as a3, increases suddenly 
in magnitude towards D. Although resonance between the (1,l) and (3,4) wave 
components is predicted in table 1 to  occur near d = 0.748, the nonlinear modification 
of the linear resonance relation moves it here towards larger depth ratios. The rapid 
increase of a34 is itself reversed a t  D as both a47 and aa8 increase in magnitude. 
However, these latter two coefficients are significant only for a limited range of d,  to 
the point E ,  where a3, increases further in magnitude until it  dominates the wave. At 
the end of the curve in the figure, a t  the point F ,  a,, is almost zero. A linear stability 
analysis shows that the wave is strongly unstable there. Linear stability calculations 
at different points along the curve found stable waves between A and B only, with 
the instability becoming stronger from B towards F .  

The change in stability, according to the linear stability calculations, occurs near 
B with the appearance of marginally unstable wave modes. It is not known whether 
the instability is persistent in these marginal cases, or whether it is an artifice of the 
Floquet stability method. Equivalent calculations on resonating pendulums have 
found that the Floquet method does not determine accurately the point where 
stability changes. Stability for a given solution is found accurately only by longer 
time numerical integration of the evolution equations from initial conditions in the 
neighbourhood of the solution. It is believed that the difficulty arises here from 
linearization of the essentially nonlinear internal resonance phenomenon. For this 
reason, change of stability is not shown in figure 2, but it is believed to lie between 
B and C. This problem is discussed further in $ 5 ,  example 2. 

The computational method used in finding the curves is that outlined in $3, 
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FIGURE 2. Dominant wave coefficients for steady waves as the ( 1 , l )  us. (2 ,2)  resonant depth 
ratio d is approached from larger values of d .  

usually choosing d as the independent variable for stepping purposes. However, d 
was unsatisfactory for parts of the curves, where other variables were used for 
stepping from one wave solution to the next. Between B and C ,  for example, a22 was 
the independent variable for stepping purposes. For most calculations, the index m 
ran from 0 to 5 and the index n from 1 to 8 in (2.2a, b ) .  Larger values of the indices 
were used only for particular examples in order to test the accuracy of the series 
expansions. 

The Jacobian in Newton’s method was calculated a t  each step and changes in sign 
of the determinant were investigated in more detail. Changes in sign occur at turning 



460 P .  J .  Brpnt  

(4 

a11 

3 

1 
axx 

- 1  

- 3  
B\ 

- 5  
0.74 0.78 0.82 0.86 0.90 0.94 

I I I I ' I  I 

d 

FIaum 3. Dominant wave coefficients for steady waves in the neighbourhood of the (1,l) us. 
(2 ,2)  resonant depth ratio d.  

points such as E in figure 2 (a-c), and where the calculation jumps from one branch 
to another, from figure 2 into figure 3 for example. The behaviour of aZ2 us. din  figure 
2 ( b )  is similar to that ofA, us. K in Chen & Saffman (1979, figure 8 b ) ,  described there 
as limit-line behaviour. The pure wave on AB of figure 2 ( b )  changes into a 
combination (1,2) wave on BC, for which the first and second harmonics a,,, aS2 are 
of comparable magnitude. The limit-line refers to the curve that BC approaches as 
aZ2 increases, this being the curve that extends back to a bifurcation point for pure 
waves near B. Figure 2 (a-c) shows that the limit-line behaviour in the present fully 
nonlinear model is terminated a t  the point C by the occurrence of a second internal 
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FIGURE 4. Steady circular progressive wave, E = 0.02, d = 0.86, drawn relative to the horizontal 
mean surface, without showing the sides of the circular basin. Vertical magnification 2.5. 

resonant interaction, which in turn is followed by further internal resonant 
interactions at D and E .  Chen & Saffman (1979, figure S(b), shows oppositely-directed 
asymptotic behaviour for A ,  on the two sides of the limit-line. The same 
phenomenon is found here, with a22 becoming large and negative as the limit-line is 
approached from smaller values of d .  

The wave coefficients a,,, a22, a34 of this second family of steady waves, on the other 
side of the limit-line, are plotted in figure 3(a-c). The section of these curves between 
A and B is the only part without significant resonant wave components, where the 
waves are found to be linearly stable. The a22 coefficient increases in magnitude from 
B to C as the depth ratio increases towards the predicted resonance for the ( 1 , l )  and 
(2 ,2 )  wave components. At the point C, all coefficients amn, m odd, are zero. These 
coefficients may be continued symmetrically to values of opposite sign on the other 
side of the axis in figure 3 (a,  c),  because this is equivalent to a change in 7c of the 
origin in 8-ct. No other wave components contibute resonantly from A to C. 

If the steady wave curve is followed from A to D instead, aZ2 increases in 
magnitude towards resonance, with a34 increasing also. Resonance between the ( 1 , l )  
and (3,4) wave components is predicted in table 1 to occur a t  a lesser depth ratio, but 
the nonlinear modification of the linear resonance relation causes it to  be significant 
on this part of the curve. The a22 coefficient continues to increase from D to E ,  while 
a34 decreases to zero a t  E ,  as a t  C. The (4,7) and (4,8) wave components make a 
minor resonant contibution on the curve from A to E .  

Figures 3a-3c are interesting for a number of reasons. They describe a family of 
steady wave solutions which exists only for a limited depth range, from d = 0.755 to 
d = 0.930. The family is dominated by the strong growth of the (2,2) wave 
component due to resonant forcing by the ( 1 , l )  wave component, which is predicted 
by the linear theory to occur near d = 0.831. There are two sections of curve side by 
side, from A to C and from A to E ,  on one of which a22 is the only significant resonant 
coefficient other than a,,, while' on the other a22,a34,a4, and a48 all contribute 
resonantly. Even though the curve is cusped a t  A in figures 3 ( a )  and 3(b), it changes 
smoothly a t  A with respect to a34 in figure 3(c). 

The progressive steady wave at  depth ratio d = 0.86 on the section BC of figure 3 
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is sketched in perspective in figure 4. In contrast with figure 1, (which lies on the 
section AB of figure 3), the (2,2) wave component is significant, with more than twice 
the magnitude of the ( 1 , l )  wave component, the two components being in resonant 
balance. The wave has four crests, on the wall at 0-c t  = 0, R, and a t  a smaller radius 
a t  8-ct  = +in. It is linearly unstable, but because the unstable growth rate is small, 
the perturbed wave is examined in more detail as example 2 in $5.  

Further families of steady wave solutions have been calculated as this resonance 
is approached from lesser depth ratios. These families are influenced more strongly 
by the resonance between the (1 , l )  and (3,4) wave components near d = 0.748, and 
the ( 1 , l )  and (4,7) wave components near d = 0.721. (The latter is sketched in 
Bryant (1988,. figure l).) The common feature of these families is that, over most of 
the parameter range, a number of resonating wave components contribute 
significantly to the wave structure, and most of these waves are linearly unstable. 

5. Linear stability and time evolution 
The linear stability of steady progressive waves, symmetric in 8, is investigated 

with respect to small perturbations which may be non-symmetric in 8. The internal 
resonant interactions between wave components are nonlinear, which suggests that 
linearization may be valid for a limited time only. This limited validity occurs in the 
linear instability of Stokes waves to sideband modulation, reviewed for instance by 
Yuen & Lake (1982). The linearized calculation indicates instability, but the 
nonlinear resonant interaction between the two sideband wave components and the 
first and second harmonics of the Stokes wave stabilizes the wave. It is sufficiently 
stable in some cases that the initial modulated Stokes wave recurs cyclically during 
its time evolution. With this example as a precedent, it seems desirable to test both 
linearly stable and unstable perturbed waves, by making fully nonlinear calculations 
of their time evolution. 

The linear stability is calculated by the Floquet method outlined in $3, using the 
non-symmetric progressive wave perturbation (3.4). Steady waves without signifi- 
cant resonant wave components are found to be linearly stable, while those with 
significant resonant wave components are linearly unstable. The characteristic 
equation for the eigenvalues h of the stability matrix contains even powers of h only, 
a property associated with the symmetry of the steady wave and with the time 
reversal invariance of non-dissipative systems. 

The fully nonlinear time evolution of the perturbed waves is calculated by the 
method outlined in 0 3, to compare the nonlinear evolution with that obtained from 
the linear stability calculations. Three examples are presented, first the stable wave 
sketched in figure 1, then the weakly unstable wave sketched in figure 4, and finally 
a more strongly unstable wave. The small initial asymmetric progressive wave 
perturbation 

i j  = O.OlJ,(k,, r )  sin ( 0 - c t ) ,  (5.1) 

is applied in each case, equivalent to 

a,, = 0.01, p,, = -O.Ol/c, a,, = p,, = 0 otherwise, (5.2) 

a t  time t = 0. 

Example 1 
8 = 0.02, d = 0.78, c = 1.282. 
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FIGURE 5. (a) The time evolution of the amplitude of the perturbed (1 , l )  wave Component, 
E = 0.02, d = 0.78, according to the linear and nonlinear calculations. (b)  The time evolution of 
the phase of the perturbed ( 1 , l )  wave component, E = 0.02, d = 0.778, according to the linear and 
nonlinear calculations. 

E t  

The water surface displacement of the steady wave is 
5 8  

7 = X X a,,J,(k,,r)cosrn(B-ct), (5.3) 
m-0 n-1 

where a,, = 2.889, aZ2 = -0.271 are the only wave coefficients exceeding 0.1 in 
magnitude. When the perturbation (5. l),  (5.2) is applied, the linear stability solution 

(5 .4~ )  
satisfies a,, = 2.889 14 +0.00007 sin (1.4334 + . . . ( 

a,, = 2.00995+0 .00006cos(l .443~)+.. .  (lo-'). 

a ( l ,1 )  = (atl+at,)t, ~ ( l ,  1) = tan-' (cql/all), 

(5.4b) 

The amplitude a(1 , l )  and phase 6( l ,  l),  defined by 
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are plotted in figure 5 ,  from the linearized calculation and from the fully nonlinear 
calculation. 

I n  comparing the linearized calculations with the fully nonlinear calculations in 
figure 5, it  is noted that the two methods are independent, and that both sets were 
done on a supercomputer taking full advantage of its enhanced numerical precision. 
The linearized results are calculated by an algebraic eigenvalue method, in which the 
truncation of the Fourier-Bessel series make no significant contribution to the 
dominant eigenfrequencies and eigenmodes in figure 5. The nonlinear results are 
obtained from numerical integration of the evolution equations by a variable 
stepsize, predictor-corrector method, with the only significant numerical error 
arising from the gradual growth of the wave modes near truncation. The integrations 
were stopped when the mean potential energy (2.7) departed by more than 1 YO from 
its initial value (Unfortunately, the results from the supercomputer were stored to 6 
decimal places only, so that subsequent analysis on a smaller computer to produce 
figure 5(b )  gave the digitized appearance a t  the limit of storage accuracy of the 
phase.) 

The dominant contribution to the perturbation of the ( 1 , l )  wave component in 
both the linear and nonlinear solutions is from the eigenvector with the eigenvalue, 
h = & 1.433i. There is good agreement between the amplitudes, a(1, l),  for the two 
solutions (figure 5 b ) ,  but the phases, O(1, l),  differ in mean slope (figure 5b).  This 
difference is equivalent to a small increase in the phase velocity of the perturbed 
wave in the nonlinear solution compared with the linear solution, and probably 
results from the small quadratic dependence of the phase velocity on the wave 
amplitude. It is clear from figure 5 that  a small perturbation applied to the linearly 
stable wave leads to a small oscillation of the wave components in which internal 
resonance remains insignificant. However, if a larger nonlinear perturbation is 
applied, so that the perturbed wave lies near the branch AD in figure 3 ,  rather than 
near the branch AB, internal resonance does become significant and the perturbed 
wave is unstable. This possibility is described in example 3. 

Example 2 
E = 0.02, d = 0.86, c = 1.301. 

The water surface displacement of the steady wave is given by (5.3) with 
a,, = 1.704, a22 = - 3.756 being the dominant wave coefficients. Linear stability 
calculations show that the perturbed ( 1 , l )  coefficients satisfy 

( 5 . 5 ~ )  

(5.5b) 

The amplitude a(1,l) and phase d ( 1 , l )  are plotted in figure 6, from both the 
linearized and nonlinear calculations. 

This example lies on the section BC of figure 3,  where the wave on AB has 
been changed by internal resonance to a combination (1,2) wave for which the first 
and second harmonics have a comparable magnitude. The linearized calculations, 
(5.5a, b ) ,  predict weak instability, but this is an initial-value property only, without 
direct implications for the longer-time or asymptotic behaviour of the perturbed 
wave. Unfortunately, numerical integration of the fully nonlinear model had to be 
stopped at ~t = 10 (about 80 wave periods) because of the increasing effect of series 
truncation. The linear and nonlinear calculations for the amplitudes in figure 6 ( a )  
show significant differences only towards the end of the integration. Repetition of the 

a,, = 1.7404-0.0074sin (0.196e3)+0.0070sinh (0.0077et)+ ... 
all = 0.0006cos(0.196~t)+0.0106cosh (0.0077&)+ ... 
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FIGURE 6. (a)  The time evolution of the amplitude of the perturbed ( 1 , l )  wave component, 
E = 0.02, d = 0.86, according t o  the linear and nonlinear calculations. ( b )  The time evolution of 
the  phase of the perturbed ( 1 , l )  wave component, E = 0.02, d = 0.86, according t o  the linear and 
nonlinear calculations. 

E t  

numerical integration with more wave modes in the Fourier-Bessel series lengthens 
the time of validity of the nonlinear calculation beyond figure 6 ( a ) ,  a t  greater 
computing cost, but with a decreasing physical relevance because of the neglect of 
dissipation. If the numerical integration is made more realistic by including weak 
wavenumber-dependent linear damping, truncation effects are reduced or disappear 
because the high-wavenumber components are damped before they cauae problems. 
The slopes of the mean phases in figure 6 ( b )  differ for the linear and nonlinear 
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calculations probably because of the neglect in the linearized calculations of the 
quadratic dependence of phase velocity on amplitude. 

Subsequent nonlinear calculations, a t  about the same wave amplitude and depth 
parameters as in this example, have been made on forced, weakly damped waves in 
a circular basin (Bryant 1988). The combination (1,2) waves, with the first and 
second harmonics of comparable magnitude, are found to  be stable over at least part 
of the range of the forcing amplitude and frequency for which internal resonance 
occurs. This result is of more relevance to waves in harbours or bays than is the 
longer-time behaviour of example 2 without dissipation. 

Example 3 
s = 0.02, d = 0.78, c = 1.283. 

This steady progressive wave is on the section AD of the curves in figure 3, with 
the same depth ratio as example 1 (which is on the section AB). The values of a,, and 
aZ2 are close to those in the first example with a,, = 2.714 and a22 = 0.194, but now 
aS4 = 2.278 is a significant wave coefficient. The stability matrix has a number of 
eigenvalues with non-zero real parts, the eigenvector with eigenvalue h = f0.0098 
being dominant in the perturbation of the ( 1 , l )  wave component, but that with 
eigenvalue h = 1,2497 being dominant in the perturbation of the (3,4) wave 
component. Truncation errors become significant in the numerical integration of the 
fully nonlinear model at about st = 3 (24 wave periods), even when more wave 
components are added, due to the unstable growth of the higher wavenumber 
components. Resonant interactions appear to play a role in transferring energy from 
the lower to the higher wavenumber components, causing the disintegration of the 
wave. 

Example 3 has the same amplitude and depth ratios as example 1, but differs in 
the presence of a significant (3,4) wave component in resonant balance with the 
( 1 , l )  wave component. Even though the linear stability analysis shows that example 1 
is stable to small perturbations, the strength of the instability in example 3 suggests 
that example 1 is unstable to larger nonlinear perturbations containing a significant 
(3,4) wave component. I n  other words, a wave which is stable to small perturbations 
may exhibit unstable growth in the presence of larger externally generated 
perturbations containing a significant higher wavenumber component internally 
resonant with the given wave. This form of unstable wave growth is thought to occur 
in a particular harbour on the rare occasions when ocean swell of the appropriate 
spectral content and direction is able to propagate directly in the harbour entrance, 
causing resonant amplification of otherwise small waves within a partially enclosed 
region of the harbour. 

6. Discussion 
The main result emerging from this investigation is the importance of internal 

resonance for free waves in enclosed regions. The weakly nonlinear analysis of Miles 
(1976, 1984a, b)  describes all the essential features of the approach to resonance. 
However, the prior ordering of the wave components, which is made in a weakly 
nonlinear theory, prevents the calculation of waves with different orderings of the 
wave components, such as are caused by internal resonances. Fully nonlinear 
calculations, without prior ordering assumptions, reveal an abundance of free 
progressive waves with resonant wave components. Families of waves with different 
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sets of resonant wave components are associated with each of the depth ratios listed 
in table 1. It is expected that if higher numerical precision were used, further families 
could be found associated with depth ratios a t  which higher resonances occur. 

Weak dissipation significantly modifies the internal resonant interactions with the 
higher-wavenumber components. For this reason, dissipation plays a stabilizing role 
for waves in enclosed regions subject to internal resonance. Calculations on such 
waves should include dissipative effects, particularly calculations over longer times. 

Most of this investigation was done during a period of leave a t  the Institute for 
Geophysics and Planetary Physics, University of California, San Diego. I am grateful 
to John W. Miles for making this visit possible, and for discussions on the 
calculations. Acknowledgement is made to the San Diego Supercomputer Center, 
which is sponsored by the National Science Foundation, for the computing time used 
in this research. 
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